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minimal number of observations

A. Michalski and J. Srzednicka

Department of Mathematics, Agricultural University of Wroclaw

Summary

In the paper the mixed linear model coresponding to two-way layouts with the
minimal number of observations is considered. Theoretical considerations as well as
simulations presented in the paper prove that in this model statistical inference on
variance components is "uncertain" even for the layouts that assure the existance of
the uniformly best unbiased estimators and of the most powerful tests. Some
suggestions are made how to improve the "efficiency” of the layouts by simple manner.

1. Two-way cross classification mixed model

Let us consider an experiment in which n experimental units are classified
by two factors having r and c levels, respectively, and classification is done
according to the rxc matrix N with entries n;;= 0. Here n;; is the number of

observations in the (z, j)-th cell of units treated by the i-th level of the first (row)
factor and the j-th level of the second (column) one. Let Yij. be the observation

taken on the k-th unit of the (i, j)-th cell, k=1,...,n,-j. The basic assumption is one

of the additivity of the effects of the factors levels which can be written for
I8 eer =102 et and k=1,2,...,n,~j,as

Yip =Tty tey. (1.1)

Here 1; is the effect of the i-th level of the first factor, y; is the effect of the j-th
level of the second factor, while e;;, are normally distributed random errors. The
above model may be represented in the following matrix form
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v=X;y +X;t+e, ‘ (1.2)

where y is an nxl-vector of observations, y = (y,...,Y.), T=(Ty,...,T,), e is the
vector of errors and X;, X, are nxc and nxr known matrices of full ranks r and
¢, respectively, which elements are 0 or 1 depending on the ordering of the
components of y. Anywhere X)X;=N, X;1.,=X,1,=1,, while
D, = XX, = diag{n_j} and D, = XX, = diag{n; } are diagonal matrices with dia-
gonal elements n; and n.;, respectively, where n; = Z;n;; and n,'j =Z;n;. We will
assume that n; and n.;are all positive so that both D, and D, are positive definite.

In many applications of two-way classification model effects are considered to
be random. The assumption that Tt is normally distributed with E¢r)=0 ,

E(t) = 03 I, , E(te’) = 0 leads to the mixed model in which
E(y)=X;y; Cov(y) =0 X,Xp+ 01, . (1.3)

The general problem we consider in the paper is a statistical inference on the
variance components o and o2. The main considerations are restricted to layouts
with the minimal number of observations. Theoretical considerations as well as
simulations presented in the paper prove that in the mixed model (1.3) corre-
sponding to layouts with the minimal number of observations statistical inference
on variance components is "uncertain" even for the models that assure the
existance of the uniformly best unbiased estimators and of the most powerful
tests. Some suggestions are made how to improve the "efficiency" of the layouts
by simple manner. ’

2. Layouts with the minimal number of observations

Let us consider an rxr-matrix C, defined as follows
C,=X,M. X, =D, - ND;'N' @2.1)

with M, = I, - X;D;'X, being the orthogonal projector on the kernel of X . Since
C.1,.=1,,rank(C,) <r-1.Letrank(C,) =r-q, 1= q=<r-1.If g=1 then the layout
is called connected, for g>1 the layout is said to be g-disconnected.

It has been proved by Kageyama (1985) (see also Dodge, 1985) that

nzc+rank(C)=r+c-gq. (2:2)

Thus n =r + ¢ - q is the minimal number of observations for the two-way layout
with rank(C,) = r-q. For construction of such layouts see Kageyama (1985). All
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of them are by definition binary, i.e. their incidence matrices have elements 0
and 1 only.

An interesting class of connected layouts with the minimal number of ex-
perimental units has been considered by Baksalary et al. (1990). The class
consists of layouts with the incidence matrices isomorphic, with respect to per-
mutations of rows and/or columns, to

Ko
it 2.3)
lf

r-1

It follows from Theorem 3 in Baksalary et al. (1990) that when r = 3 and N is
given by (2.3) then under corresponding mixed model (1.3) there exists the
uniformly best invariant quadratic and unbiased estimator (UBIQUE) for every

function f,02 + fo02. Following Gnot et.al. (1992, lemma 2.2) the above model also

assure the existance of the uniformly most powerful invariant test (UMPIT) for
testing

H: 62=0 vs K: o2>0. (2.4

Now we present some details concerning explicit forms of the UBIQUE’s and the

UMPIT.

3. Estimation and testing for variance components
3.1. Estimation

The problem of estimation of f,02 + f,02 in the model (1.3) is invariant under
the group G, of translations g(Y) =y + Xjy, y € R’. Following Olsen, Seely and
Birkes (1976) (see also LaMotte, 1976) a maximal invariant statistic with

respect to G is t = By, where B is an (n—-c)xn matrix defined as follows
BB'=1,., BB=M,, 3.1)
where M, = I, - X;D;'X}. The model for t is given by

E(t)=0, Cov(t)=0c’W+0%,,, W=BXX,B. (3.2)

Denote by a; > ay > ... > 0, = 0 the ordered sequence of different eigenvalues of
W with the multiplicities vy,...,v;, . We shall assume through the paper that
h = 2. It is easy to establish that:

(i) positive eigenvalues of W and C, = X,M, X, = D, - ND;'N’ are the same,

(i) oy, = 0 iff n >r+c-q, and in this case v;, = n-r—-c+q .
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Let W= 2 i o,E; be the spectral decomposition of W and Z; = t'/E;t /v,
i=1

¢ =1,...,h. The following lemma established by Olsen et al. (1976) gives basic

statistical properities of Z = (Z,,...,Z})’ .
Lemma 3.1

@) viZ; /(02 + 0D ~ %2, i=l,..h,

(ii) Z = (Zy,...,Z;,)’ is a minimal sufficient statistic for the family of distributions
of t,

(iii) Z is a minimal complete statistic iff 4 = 2,

(iv) Zy,...,Z;, are statistically independent,

(v) for an arbitrary real vector a = (ay,...,a;)’

E(a'Z) = (£ q;0)0? + (2a))02,

. 3.3
Var(a'Z) = 23a7(0%q; + 022/ v;. P

Following Gnot and Kleffe (1983) admissible invariant quadratic estimators
for fi0? + f,02 are linear combinations a'Z. In the paper we restrict our consider-
ations to the following two admissible estimators:

h
v =Y Zihoy + Ag)vy [ (L+oy)?, (3.4)
=

h-1
Vg = 2 Zi }"Olvi /Oti * Zh }\'OZVh a (35)
£
where & = (A, M)’ and A = (A, Ap)’ are such that E(v,) = fio2 + foo?, i=1,2. It
is worth noting that v, is MINQUE for f,0? + fo02 | while Vs (in the case ay, = 0)
is a limiting bayesian estimator with respect to the prior distributions k,,, such
that Var, (6?) tends to infinity (cf.Rao, Kleffe, 1988, pp. 309-316).

In the particular case of the model (1.3) corresponding to layout with the
incidence matrix (2.3) the matrix W given in (3.2) is nonsingular and has two
different positive eigenvalues o, = r/2 and a, = 0.5 with multiplicities v, = 1 and

vg =r-2 , respectively. There exist UBIQUE’s for flof + f2062; in particular, for
03 and 03 they are
=22 -Z) [(-1) and &= (rZy~2Zy) [(r-1)

with
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Aoy o 4 0%(rPr-1) + 40(~-1) + 4
Var(c;) = 20, I

and

A ol 1 A
Var(oez) a 20;1 0°r° + 80r + 4(r+2)

4(r-1)(r-2) :
where 0 = 62 /o2,
3.2. Testing
The problem of testing hypothesis
H:0r2=0 Vs K:0,2>0 3.6)
or equivalently
H:0=0 vs K:0>0, 0=02/0> 3.7

in the model (1.3) is invariant under the group G, of transformations
&) =cly +Xyy) , YER’, c ER,. A maximal invariant statistic with respect to
Go is Zo=(Z,/2Zy,...,Z)_1/Z)) while the Neyman-Pearson test for testing
H:0=0 vs K: 0=0,, 0, >0 rejects H for sufficiently large

Frp(0,) = == (3.8)

E ViZi /(1 & otiﬂ*)
=1

(cf.Gnot et al., 1992). In the particular case when h=2 the Neyman-Pearson test
coincides with the UMPIT which rejects H for sufficiently large F = Z, / Z,. Let

Zl(l + 0(12)

gy = Zo(1 +0ay)

3.9)

Following lemma 3.1 for an arbitrary and fixed 0 the statistic F((0) has a central
F-distribution with v; and v, degrees of freedom and F(0) = F.

Let p(0) be the power function of the UMPIT at level p for testing (3.7) in the
model (1.3) with & = 2. The following lemma gives a basic properties of the test.



114

Lemma 3.2. There exists lim B(0) = f and

60— x
@O P=11if o =0 (n>r+c+q),
(i) <1 if oy > 0 (n =r+c—q).

Proof. First note that
B(B) = Po(F > k,,) = Po[F(0) > k,(0)],

where k, is determined by B(0) = p, while kp(0) = k(1 + 090) /(1 + 010). If O tends
to infinity then k,(0) tends to k,ay /oy which is positive if ay > 0 .

4. Examples and simulations

According to Lemma 3.2 (ii) the power function p(0) of the UMPIT for testing
(3.7) in the model (1.3) with N given by (2.3) does not achieve 1 if 0 tends to
infinity. It is so because this layout has a minimal number of observations
(n=r+c-1) and in consequence W is positive definite (the minimal eigenvalue of
W is 0=0.5 ). The table below shows lim B(0) as a function of r for layouts with

00—

the incidence matrix having the structure (2.3); (the significance level p=0.05).

7 3 5 10 16 20 50 200 500 1000
B() 0.0862 | 0.2498 | 0.4867 | 0.6002 | 0.6441 | 0.7774 | 0.8892 | 0.9300 | 0.9505

The fact that the power function of the tests for testing (3.7) is essentially
less than one even for far alternatives make the layouts with the minimal number
of observations unacceptable for practice if mixed models are assumed. To over-
come this inconvenience, as competitors let us consider g-disconnected layouts

with the incidence matrix N(? having the form

N9 _ " l<gsr-1. (4.1)

Comparing (2.3) and (4.1) we see that the number of observations as well as
the numbers of levels of two factors for both layouts are the same. However, in
the model corresponding to layout with the incidence matrix (4.1) the matrix W
given by (3.2) is singular and has three different eigenvalues oy =(r—q+l) /2,
ay = 0.5 and a3 = 0 with the multiplicities v; = 1 , vy = r-g-1 and v4 = g-1.
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As an example let us consider layouts with r=16 and with the incidence

matrices N given by (2.3) and N@, q=2, 6, 11, given by (4.1). Figure 1 shows the
power function B(0) of the UMPIT in the model corresponding to N and the
attainable upper bounds (AUB’s) of the power functions in the models corre-

sponding to N | as functions of 0 . The values of AUB’s have been obtained as
power functions of the Neyman-Pearson tests at 0 (for details see LaMotte et al.,
1988).

We can see that the behaviour of the power function of the locally best test

in the model with N is quite different than in the case when UMPIT exists.
The functions tend to 1 very fast if 0 tends to infinity.

To compare the variance of estimators for the variance components 03 and
03‘ we consider the UBIQUE’s in the model corresponding to N and estimators
v; (MINQUE) and v, (limiting bayesian estimator) given by (3.4) and (3.5) in
the models with incidence matrices N, Figures 2 and 3 show the ratios R(0) of
variances of MINQUE and UBIQUE for o2 and o2, respectively, while Figures 4
and 5 show the similar ratios of variances of limiting estimator and UBIQUE.
As we can see, in each presented case there exist such value 0, that for 0 > 6,

the variance of UBIQUE is greater than the variance of estimators in models
where UBIQUE does not exist.

0.8
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R(®)
044 N UMPIT
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.................................... q=11
; 0 20 40 60 80 i

Fig. 1. Comparison of power functions
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Fig. 3. Ratio of variances of MINQUE and UBIQUE for og
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Fig. 5. Ratio of variances of limiting estimator and UBIQUE for oo
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Wnioskowanie statystyczne w ukitadach
dwukierunkowej klasyfikacji z minimalna liczba
obserwacji

Streszczenie

W pracy rozwazano mieszany model liniowy odpowiadajacy ukladom
dwukierunkowej klasyfikacji z minimalna liczba obserwacji pod katem estymacji i
testowania hipotez statystycznych dla komponentéw wariancyjnych. Teoretyczne
wyniki, jak réwniez obliczenia numeryczne przedstawione w pracy, dowodza, ze dla
takiego modelu kryterium istnienia jednostajnie najlepszych estymatoréw
nieobciazonych lub jednostajnie najmocniejszego testu nie zawsze jest dobrym
kryterium doboru ukladu. Pokazano, ze niewielka modyfikacja ukladu
doswiadczalnego poprawia jego "efektywnosé".

Slowa kluczowe: uklady dwukierunkowej klasyfikacji, komponenty wariancyjne,
testy niezmiennicze dla komponentéw wariancyjnych



